The present investigation is concerned with the possible effects of material-related properties (molecular mass, glass transition and melting temperatures, crystallinity, tacticity) and particle-related properties (shape, size, specific surface area) on the compression characteristics of the chosen model polymer powder: poly(vinyl chloride) (PVC). Four grades were selected known in literature for providing compacts of varied mechanical strength. The compression characteristics were determined using an instrumented single-punch tableting machine. The differences in tableting characteristics could not be ascribed to any of the material-related properties, but a direct relationship was observed between the compact strength and the specific surface area of the particles, as measured by nitrogen adsorption. The compact hardness was thus only dependent on the inter- and the intraparticulate contact area, which in turn is dictated by the very peculiar morphology of the grains of the PVC powders, whether prepared by emulsion or suspension polymerization.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024